
Problem 1 (25 points) 
 

(from Liou, 1.23) Consider an isothermal non-scattering atmosphere with a 
temperature T and let the surface temperature of such atmosphere be Ts. Derive an 
expression for the emergent flux density at the top of atmosphere whose optical depth 
is τ*

 by using Eq. (1.4.25) and show that is can be expressed by the exponential 
integral of third order given by 

( ) µµµ
ττ dE )exp(

1

0

**
3 ∫ −=  

 
Solution: 

The upward intensity at the top of atmosphere is given by Eq. (1.4.25) in the text in 
the form  
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Since  
)();;( * sTBI νφµτ = (surface emission) 

)();;( TBJ νφµτ = (atmospheric emission), 
we find 
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The flux density is defined by 

[ ]

[ ])(21)()(2)(

)/exp(12)()/exp(2)(

),0(2),0()0(

*3*3

1

0
*

1

0
*

1

0

1

0

2

0

τπτπ

µµµτπµµµτπ

µµµπφµµµ

νν

νν

π

ETBETB

dTBdTB

dIddIF

s

s

−+=

=−−+−=

===

∫∫

∫ ∫∫

 

where 
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is the exponential integral of the third order. 
 

Problem 2 (20 points). 
The scale height H is defined by dp/p =-dz/H. From the hydrostatic equation and the 
equation of state, show that H=kT/Mg. where K is the Boltzman constant, M is the 
mass of air molecules, and g is gravity. Since the molecular transitional energy is 
0.5KT, the scale height is then twice the distance through which atoms/molecule that 
have the equipartition of translation energy can rise in the vertical direction against 
the force of gravity. For T=296 and T=50 calculate atmospheric scale height H. 



 
Solution. 

The scale height, H, is defined by 
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The hydrostatic equation is given by 
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Substituting the equation of state p=ρRT, where R is the gas constant for air, yields 
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The scale height is then given by 
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where K=M*Rg=(µ/Na)*(R/µ)= R/Na is the Boltzman constant, R is the universal gas 
constant (8.31432 J mole-1 K-1), M is mass of air molecule (g), µ is the molecular 
weight for air (29 g mol-1), Na is Avogadro number (6.02297x 1023 molecule mol–1), 
and g (9.8 m/sec) represents the gravitational attraction force. The translation energy 
is given by KT/2. It follows that the scale height is twice the distance through which 
atoms or molecules (having the equipartition of translation energy) can rise in the 
vertical direction against of force of gravity. The atmospheric scale height is 8 km for 
T 296 K and about 2 km at 50 K. 
 

Problem 3 (50 points) 

 
 



Solution 

 

 



 
 
Solution 
 

 

 
    
Solution 

 

 



 
Extra Problem 4 (30 points). 
From (Liou, 4.6) The half-width of Lorentz line is proportional to pressure and can be 

expressed by α≈αr(p/pr), where αr is the half width at the reference pressure pr. Show 
that the optical depth may be expressed by 
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where α1 and α2 are two integration limits and  
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where q is the mixing ratio and g is the gravitational acceleration. 
 
Solution 
 
The optical depth of a Lorentz line may be expressed by 

duk∫= ντ . 
The half width of a Lorentz line may be expressed by 
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Thus, absorption coefficient for a Lorentz line can be written as 
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The path length is related to pressure via the hydrostatic equation: 
( ) gdpqgdpdzdu aa =−⋅−=−= ρρρ , 

where the mixing ratio q=ρa/ρ, with ρa and ρ being the densities fro the absorbing gas and 
air respectively. It follows that 
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Thus, we have 
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Extra Problem 5 (30 points). 
 

 
a) Why does the 10 cm-1 resolution atmospheric transmission increase going from the 
band center to the band edge of an absorption feature? Explain in terms of the 
physics of molecular absorption. Use the 15 µm CO2 band as an example. 
 

Solution: 
The transmission from space to a given level increases as the wave-number moves 
away from the vibrational band center. This implies the lines toward the band edges 
tend to have a smaller optical depth and thus lower mass absorption coefficient. The 
absorption coefficient 

 
is higher in the band center because the line strength S is larger there. The line half-
width αL is mainly affected by pressure and the average pressure does not change 
with the wave-number. The line strength decreases in the band edges, because those 
lines are from rotational transitions in high energy levels (large J). These large J 
rotational energy levels have few molecules in them because their energy is 
significantly above typical thermal energies in the atmosphere. 
 
 
b) The 708 to 724 cm-1 transmission from space to 10 km is 0.765, while from 5 to 4 
km it is only 0.425, even though these two paths contain virtually the same absorber 
amount u of CO2 (∆p=76 mb in each case). Explain this difference in transmission in 
terms of the behavior of molecular absorption lines. 
 

Solution: 
Here we have a particular wave-number range, so we are considering the same 
absorption lines. However, the different height corresponds to average pressures of 
about 40 mb (for space to 18 km) and 580 mb (for 5 to 4 km). The 15 times greater 
pressure causes the lines widths t be 15 times wider. Although the higher pressure 
reduces the optical depth of the lines centers, they generally remain large, so the 
transmission of the line center remains zero (T=exp(-τν)). The higher pressure causes 
the optical depth of the wings to increase, and this effect reduces the band mean 
transmission. 


